矩阵:
矩阵是数值程序设计中经常用到的数学模型,它是由 m 行和 n 列的数值构成(m=n 时称为方阵)。在用高级语言编制的程序中,通常用二维数组表示矩阵,它使矩阵中的每个元素都可在二维数组中找到相对应的存储位置。然而在数值分析的计算中经常出现一些有下列特性的高阶矩阵,即矩阵中有很多值相同的元或零值元,为了节省存储空间,需要对它们进行"压缩存储",即不存或少存这些值相同的元或零值元。
操作:可以对矩阵作加、减、乘等运算。
存储压缩目标:
节约存储空间
压缩的方法:
零元不存储
多个值相同的只存一个
压缩存储的对象:
稀疏矩阵
特殊矩阵
特殊矩阵:
值相同元素或者零元素分布有一定规律的矩阵称为特殊矩阵 例:对称矩阵、 上(下)三角矩阵都是特殊矩阵
特殊矩阵压缩存储(以对称矩阵为例)
对称矩阵是满足下面条件的n 阶矩阵: aij= aji 1<= i,j<= n
k= 0 1 2 3 4 5 6 n(n+1)/2-1
对称矩阵元素可以只存储下三角部分,共需 n(n+1)/2 个单元的空间( 三角矩阵的存储方式类似)
以一维数组sa[0……n(n+1)/2-1]作为n 阶对称矩阵A的存储结构A中任意一元素 aij与它的存储位置 sa[k] 之间关系:
k= 0 1 2 3 4 5 6 n(n+1)/2-1
例如:a42 在 sa[ ]中的存储位置是:
k=4*(4+1)/2+2=12
sa[12]= a42
带状矩阵所有非0元素都集中在以主对角线为中心的带状区域,半带宽为d时, 非0元素有(2d+1)*n-(1+d)*d个(左上角与右下角补上0后,最后必须减掉),如下图怕示:
为计算方便,认为每一行都有2d+1个非0元素,若少则0补足存放矩阵的数组sa[ ]有:n(2d+1)个元素数组,元素sa[k]与矩阵元素aij 之间有关系:
k=i*(2d+1)+d+(j-i)(第一项i*(2d+1)表示前i行一共有几个元素,d+(j-i)这一项是用来确定第i行中,第j列前有几个元素,以i=j时,这时j-i=0,这个作为“分水岭”,左右两边的元素分别加上偏移量d.)
本例:d=1
K= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A的三元组顺序表图示
三元组 (Trituple) 类的定义
template<class Type> class SparseMatrix<Type>; template<class Type> class Trituple ...{ friend class SparseMatrix <Type> private: int row, col; //非零元素所在行号/列号 Type value; //非零元素的值 } |